Recherche avancée
Par formation
Par date
Par ville
logo HUB Formation
Organisme de Formation
aux Technologies et métiers de L'informatique
La pédagogie au service de la technologie
Accueil > Domaines > Big Data > Data Science - Mise en oeuvre du Deep Learning

Data Science - Mise en oeuvre du Deep Learning

Au-delà du Machine Learning, le Deep Learning

Le Machine Learning est un élément majeur dans l'évolution du Big Data vers l'Intelligence Artificielle. En confortant cette évolution et en se rapprochant toujours plus de cette notion d'intelligence, le Deep Learning qui repose sur des traitements distribués dans des réseaux étendus de neurones (ce qui démultiplie les capacités d'analyse des informations) offre de nouvelles possibilités. Pourquoi ? Puisque bien au-delà d'interprétations évolutives, il permet de bénéficier de prévisions, de projections, de conseils mais aussi de nouveaux services tels que la reconnaissance faciale, d'images ou de sons. Les participants à cette formation se familiariseront avec les différents types de réseaux de neurones et apprendront à mettre en place des solutions de Deep Learning.

Objectifs

  • Pouvoir maîtriser les briques de base du Deep Learning : réseaux de neurones simples, convolutifs et récursifs
  • Être capable de comprendre et d'appréhender les modèles plus avancés : auto-encodeurs, gans, apprentissage par renforcement
  • Connaître les différents modes de déploiement de ces modèles

Public

  • Ingénieurs, analystes, responsables marketing
  • Data Analysts, Data Scientists, Data Steward
  • Toute personne intéressée par les spécificités du Deep Learning

Prérequis

  • Avoir suivi la formation Les bases de l'apprentissage Machine (Machine Learning)

Programme de la formation

Introduction

  • L'avènement du Deep Learning
  • Deep Learning Time line
  • Que peuvent apprendre les machines ?

Réseaux de neurones simples (NNs)

  • Le Perceptron
  • Le Perceptron multi-couches
  • L'entrainement d'un Perceptron
  • Principe de back propagation
  • Les optimiseurs du Deep Learning
  • La régularisation des réseaux de neurones
  • Techniques de réglages des NN
  • Lab : mise en oeuvre d'un Perceptron Multi-couches

Réseaux de neurones convolutifs (convolutional neural networks - CNNs)

  • Pourquoi ce type de réseaux
  • Principe de fonctionnement des CNNs
  • Les champs de réceptions locaux
  • Les poids partagés
  • Convolution - notion de Padding
  • Convolution - Principe du calcul
  • Les couches de sous-échantillonnage (pooling)
  • Les CNNs très profonds (DCNNs)
  • Modèles CNNs - Concours ImageNet
  • Architectures DCNNs
  • Mécanisme d'Inception (Google)
  • L'apprentissage par transfert (Transfer Learning)
  • La promesse des réseaux de Capsules
  • Lab : mise en oeuvre de réseaux de neurones convolutifs pour la reconnaissance d'objets simples
  • Lab : développement d'un modèle profond par transfer learning et application à la reconnaissance fine d'objets

Réseaux de neurones récursifs (recursive neural networks - RNNs)

  • Les réseaux neuronaux récursifs simples
  • Les différentes topologies des RNNs
  • L'évanescence et l'explosion des gradients
  • La variante LSTM des RNNs
  • Autre variante : GRU
  • Les RNNs bidirectionnels
  • Le traitement de très longues séquences
  • Les approches encodeur - décodeur
  • Les réseaux seq2seq simple
  • Le mécanisme Attention
  • L'architecture Transformer
  • Lab : mise en oeuvre de réseaux de neurones récursifs bidirectionnels et seq2seq

Réseaux de neurones auto-encodeurs (autoencoders - AEs)

  • Auto-encodeurs génériques : Principes de fonctionnement ; Choix des fonctions d'encodage/décodage ; L'opération de “déconvolution” ; Usages des auto-encodeurs et modes d'apprentissage
  • Auto-encodeurs variationnels (variational autoencoders ) : Pourquoi les VAEs ; Principes de fonctionnement ; Modèle d'inférence variationnelle ; Fonction de perte des VAEs ; Optimisation : astuce du re-paramétrage ; Exemple de mise en oeuvre d'un VAE ; Différentes variantes courantes des VAEs
  • Lab : Développement et application d'auto-encodeurs au débruitage et à la génération de variations naturelles de données

Réseaux antagonistes génératifs (generative adversial networks - GANs)

  • Taxonomie des modèles génératifs
  • Les GANs, des réseaux en coopétition
  • Modèles générateurs et discriminants
  • Intérêts des GANs
  • Problématiques classiques des GANs
  • Typologie des principaux GANs
  • Principes d'entraînement d'un GAN
  • Les GANs convolutionnels profonds (DCGANs)
  • Tendances d'évolution des GANs
  • Les GANs conditionnels (CGANs, ACGANs)
  • Les GANs à représentation démêlées (InfoGANs, StackedGANs)
  • Les GANs à domaines croisés (CycleGANs)
  • Lab : mise en oeuvre de GANs convolutionnels profond (DCGANs) sur cas concrets

Réseaux de neurones profonds auto-apprenants

  • L'apprentissage profond par renforcement (deep reinforcement learning - DRL) : Principes de fonctionnement ; Cadre Markovien ; Notions de valeur d'état et de politique ; Processus de décision Markovien (MDP) ; Résolution par différents apprentissages ; Taxonomies des algorithmes RL
  • Algorithmes profonds basés sur la valeur : Principe d'optimalité de Bellman ; La valeur d'action Q ; Apprentissage profond de la valeur d'action Q ; Principes du fonctionnement des DQN (deep Q network) ; Approche par exploration - exploitation ; La relecture d'expérience (experience replay) ; Principe d'entraînement du réseau Q ; Variante DDQN
  • Algorithmes profonds basés sur la valeur : Méthodes types Gradient de la politique ; Approche REINFORCE : principes et formalisme ; Modélisation de la politique ; Théorème du Gradient de la Politique ; Algorithme REINFORCE
  • Algorithmes mixtes : Variante REINFORCE avec base de référence ; Autres variantes : ACTOR-CRITIC, A2C ; ALFAGO et évolutions
  • Lab : mise en oeuvre de plusieurs réseaux d'apprentissage par renforcement sur cas concrets

Déploiement du Deep Learning

  • Enjeux
  • Architecture de référence
  • Champs des possibles
  • Exemple de déploiement avec un serveur générique
  • L'utilisation d'un service dans le Cloud
  • Frameworks de déploiement dédiés au deep learning
  • Déploiement dans un contexte de streaming

Méthode pédagogique

Une pédagogie basée sur l'alternance de phases théoriques, d'ateliers de mise en pratique, de retours d'expériences et de séances d'échanges.
Les ateliers pratiques réalisés sur Python mais également en partie en R viennent compléter les phases de cours théoriques.
Le partage de bonnes pratiques de la part de consultants experts en Intelligence Artificielle

Méthode d'évaluation

Tout au long de la formation, les exercices et mises en situation permettent de valider et contrôler les acquis du stagiaire. En fin de formation, le stagiaire complète un QCM d'auto-évaluation.

Suivre cette formation à distance

  • Un ordinateur avec webcam, micro, haut-parleur et un navigateur (de préférence Chrome ou Firefox). Un casque n'est pas nécessaire suivant l'environnement.
  • Une connexion Internet de type ADSL ou supérieure. Attention, une connexion Internet ne permettant pas, par exemple, de recevoir la télévision par Internet, ne sera pas suffisante, cela engendrera des déconnexions intempestives du stagiaire et dérangera toute la classe.
  • Privilégier une connexion filaire plutôt que le Wifi.
  • Avoir accès au poste depuis lequel vous suivrez le cours à distance au moins 2 jours avant la formation pour effectuer les tests de connexion préalables.
  • Votre numéro de téléphone portable (pour l'envoi du mot de passe d'accès aux supports de cours et pour une messagerie instantanée autre que celle intégrée à la classe virtuelle).
  • Selon la formation, une configuration spécifique de votre machine peut être attendue, merci de nous contacter.
  • Pour les formations incluant le passage d'une certification la dernière journée, un voucher vous est fourni pour passer l'examen en ligne.
  • Pour les formations logiciel (Adobe, Microsoft Office...), il est nécessaire d'avoir le logiciel installé sur votre machine, nous ne fournissons pas de licence ou de version test.
  • Horaires identiques au présentiel.