Recherche avancée
Par formation
Par date
Par ville
logo HUB Formation
Organisme de Formation
aux Technologies et métiers de L'informatique
La pédagogie au service de la technologie

Cursus Data Steward

Cursus Métier

De nombreuses entreprises s'interrogent pour exploiter au mieux de leurs intérêts les immenses quantités de données dont elles disposent. Mais comment faire pour les faire parler ? En fonction du secteur d'activité de l'entreprise et des axes stratégiques fixés par la direction, le Data Steward doit collecter et fouiller toutes les données à sa disposition pour finalement fournir des jeux de données de qualité qui permettront à l'aide d'outils spécifiques de Data Mining et d'apprentissage automatique (Machine Learning) de déterminer des modèles, schémas ou tendances qui au final aideront l'entreprise à améliorer ses performances. A l'issue de ce cursus de 8 jours, les participants auront acquis les connaissances et compétences techniques propres au métier du Data Steward.

Objectifs

  • Disposer d'une vision claire du Big Data, de ses enjeux, de son écosystème et des principales technologies et solutions qui y sont associées
  • Comprendre le rôle stratégique de la gestion des données pour l'entreprise
  • Maitriser le cycle de vie de la donnée et savoir garantir la qualité des données
  • Aligner les usages métiers avec le cycle de vie de la donnée
  • Transformer de gros volumes de données hétérogènes en informations utiles
  • Utiliser des algorithmes d'auto-apprentissage adaptés à une solution d'analyse
  • Concevoir des modèles de documents répondant aux attentes de l'entreprise, en fonction du sujet analysé
  • Maitriser la restitution des données sous forme de graphiques répondant aux besoins métiers

Public

  • Chefs de projet
  • Développeurs
  • Analystes
  • Toute personne souhaitant évoluer vers une fonction de Data Steward

Prérequis

  • Aucun mais des connaissances de base sur le fonctionnement des systèmes de gestion de bases de données constituent un plus

Programme de la formation

1 - Big Data – Les fondamentaux de l'analyse de données (3j)

  • Objectif : Disposer des connaissances et compétences nécessaires pour identifier et collecter des données et s'assurer de leur qualité et de leur alignement sur les besoins et usages métiers de l'entreprise
  • Les nouvelles frontières du Big Data (introduction) : immersion, l'approche des 4 Vs, cas d'usages du Big Data, technologies, architecture, master-less vs master-slaves, stockage, Machine Learning, Data Scientist & Big Data, compétences, la vision du Gartner, valeur ajoutée du Big Data
  • La collecte des données : typologie des sources, les données non structurées, typologie 3V des sources, les données ouvertes (Open Data), nouveau paradigme de l'ETL à l'ELT, le concept du Data Lake, les API de réseaux sociaux, ...
  • Le calcul massivement parallèle : genèse et étapes clés, Hadoop, HDFS, MapReduce, Apache PIG et Apache HIVE, comparatif des 3 approches, limitations de MapReduce, moteur d'exécution Apache TEZ, la rupture Apache SPARK, Hive in Memory (LLAP), Big Deep Learning, ...
  • Les nouvelles formes de stockage : enjeux, le “théorème” CAP, nouveaux standards : ACID => BASE, panorama des bases de données NoSQL, bases de données Clé-Valeur, bases de données Document, bases de données colonnes, bases de données Graphes, ...
  • Le Big Data Analytics (fondamentaux) : analyse de cas concrets, que peuvent apprendre les machines ?, les différentes expériences (E), l'apprentissage, choisir un algorithme d'apprentissage machine, anatomie d'un modèle d'apprentissage automatique, les librairies de machine learning standards et Deep Learning, les plates-formes de Data Science
  • Le Big Data Analytics (écosystème SPARK) : les différents modes de travail, les 3 systèmes de gestion de cluster, modes d'écriture des commandes Spark, machine learning avec Spark , travail sur les variables prédictives, la classification et la régression
  • Traitement en flux du Big Data (​streaming​ ) : architectures types de traitement de Streams Big Data, Apache NIFI, Apache KAFKA, articulation NIFI et KAFKA, Apache STORM, articulation KAFKA et STORM, comparatif STORM/SPARK
  • Déploiement d'un projet Big Data : Cloud Computing , 5 caractéristiques essentielles, 3 modèles de services, modes (SaaS , PaaS, IaaS), Cloud Privé virtuel (VPC), focus AWS, GCP et Azure
  • Hadoop écosystème et distributions : écosystème, fonctions coeurs, HDFS, MapReduce, infrastructure YARN, distributions Hadoop, focus Cloudera, Focus Hortonworks,...
  • Architecture de traitement Big Data : traitement de données par lots, traitement de données en flux, modèles d'architecture de traitement de données Big Data, l'heure du choix
  • La gouvernance des données Big Data : outils de gouvernance Big Data, les 3 piliers, le management de la qualité des données, le management des métadonnées Big Data, management de la sécurité, de la conformité et la confidentialité

2 - Les bases de l'apprentissage Machine (Machine Learning) (3j)

  • Objectif : Maîtriser le Data Mining et le Machine Learning pour explorer de très importants volumes de données et construire des modèles répondant aux problèmes très variés des entreprises
  • L'apprentissage machine : champs de compétences, focus : Data Science, Machine Learning, Big Data, Deep Learning, définition de l'apprentissage machine, les différents modes d'entraînement
  • Les fondamentaux de l'apprentissage machine : préambule, jeux de données d'entraînement, fonctions hypothèses, fonctions de coûts, algorithmes d'optimisations
  • La classification : introduction, la régression logistique, SVM, arbres de décision, K plus proches voisins (kNN), synthèse
  • Les pratiques : prétraitement, ingénierie des variables prédictives (feature engineering), réglages des hyper-paramètres et évaluation des modèles, synthèse
  • L'apprentissage d'ensembles (ensemble learning) : introduction, l'approche par vote, une variante, le bagging, les forêts aléatoires, le boosting, la variante Adaboost, gradient boosting, fiches synthèses
  • La régression : régression linéaire simple et multi-variée, relations entre les variables, valeurs aberrantes, évaluation de la performance des modèles de régression, régularisation des modèles de régression linéaire, régression polynomiale, régression avec les forêts aléatoires, synthèse
  • Le clustering : introduction, regroupement d'objets par similarité avec les k-moyens, k-means, l'inertie d'un cluster, variante k-means++, clustering flou, clustering hiérarchique, clustering par mesure de densité DBSCAN, autres approches du clustering, synthèse

3 - Big Data - Analyse, Data Visualization et introduction au Data StoryTelling pour la restitution de données (2j)

  • Objectif : Être en mesure de concevoir des modèles de documents adaptés aux besoins métiers de l'entreprise et savoir mettre en oeuvre différentes techniques de visualisation graphique, de mise en récit et de présentation permettant de valoriser les données.
  • Data Visualisation ou la découverte de la grammaire graphique : des chiffres aux graphiques, les 3 dimensions, présentation de Tableau Software, de l'idée d'un graphique à sa formalisation dans un outil
  • Data Storytelling : présentation, exemples, techniques de la mise en récit des données, Storytelling des idées et des données
  • Comment construire son histoire : Pitch, scénario, schéma narratif
  • Les outils : fonctions de Storytelling des outils de BI, le module Data Storytelling de Tableau Software, autres outils

Méthode pédagogique

Chaque participant établit son propre planning de formation. En fonction de la date de début choisie parmi celles proposées ci-dessous, nos Conseillers Formation proposent différentes dates pour chacun des modules du cursus. Pour des raisons d'efficacité pédagogique, il est fortement recommandé de suivre les modules dans l'ordre présenté sur ce programme. L'alternance de formations et de périodes de mise en pratique en entreprise favorise l'acquisition rapide et durable de nouveaux savoirs. Animé par un expert spécialiste du sujet traité, chacun des 3 modules aborde un aspect spécifique de la thématique de formation. A travers de nombreuses mises en situation, les participants mettront en pratique les aspects théoriques abordés au cours des différentes étapes du cursus.

Méthode d'évaluation

Tout au long de la formation, les exercices et mises en situation permettent de valider et contrôler les acquis du stagiaire. En fin de formation, le stagiaire complète un QCM d'auto-évaluation.

Suivre cette formation à distance

  • Un ordinateur avec webcam, micro, haut-parleur et un navigateur (de préférence Chrome ou Firefox). Un casque n'est pas nécessaire suivant l'environnement.
  • Une connexion Internet de type ADSL ou supérieure. Attention, une connexion Internet ne permettant pas, par exemple, de recevoir la télévision par Internet, ne sera pas suffisante, cela engendrera des déconnexions intempestives du stagiaire et dérangera toute la classe.
  • Privilégier une connexion filaire plutôt que le Wifi.
  • Avoir accès au poste depuis lequel vous suivrez le cours à distance au moins 2 jours avant la formation pour effectuer les tests de connexion préalables.
  • Votre numéro de téléphone portable (pour l'envoi du mot de passe d'accès aux supports de cours et pour une messagerie instantanée autre que celle intégrée à la classe virtuelle).
  • Selon la formation, une configuration spécifique de votre machine peut être attendue, merci de nous contacter.
  • Pour les formations incluant le passage d'une certification la dernière journée, un voucher vous est fourni pour passer l'examen en ligne.
  • Pour les formations logiciel (Adobe, Microsoft Office...), il est nécessaire d'avoir le logiciel installé sur votre machine, nous ne fournissons pas de licence ou de version test.
  • Horaires identiques au présentiel.