Recherche avancée
Par formation
Par date
Par ville
logo HUB Formation
Organisme de Formation
aux Technologies et métiers de L'informatique
La pédagogie au service de la technologie
Accueil > Domaines > Big Data > Big Data - Python pour l'analyse de données

Big Data - Python pour l'analyse de données

python

Objectifs

  • Savoir utiliser les principaux outils de traitement et d'analyse de données pour Python
  • Être capable d'extraire des données d'un fichier et les manipuler
  • Apprendre à mettre en place un modèle d'apprentissage simple

Public

  • Développeurs en Python

Prérequis

  • Maîtrise de la programmation Python

Programme de la formation

POSITIONNEMENT PYTHON

  • Besoins des data-scientist : calculs, analyse d'images, machine learning, interface avec les bases de données
  • Apports de python : grande variété d'outils, expertise dans le domaine du calcul scientifique
  • Tour d'horizon des outils : pandas, agate, bokeh, scikit-learn, pybrain, tensorflow, keras, mxnet, caffe

CALCULS ET GRAPHIQUES

  • NumPy : base du calcul sur des tableaux
  • SciPy : Scientific Tools for Python, couche scientifique
  • Manipulation de tableaux, fonctions mathématiques
  • Représentation graphique avec basemap et matplotlib
  • Mise en oeuvre de SciPy/NumPy : manipulation d'images, détection de contours

MANIPULATION DE DONNÉES RELATIONNELLES

  • Pandas : manipulation de tables de données
  • Tableaux avec Pandas : indexation, opérations, algèbre relationnelle
  • Stockage dans des fichiers : CSV, h5py, netCDF
  • Comparaison et performances Pandas / NumPy

MACHINE LEARNING ET DEEP LEARNING

  • Présentation de TensorFlow, scikit-learn, keras, mxnet, caffe
  • TensorFlow : principe de fonctionnement, plates-formes supportées, distribution
  • APIs fournies en standard, modèles d'apprentissage
  • Projet scikit-learn : classification, régression, validation de modèles prédictifs
  • Démonstrations avec les modèles fournis par scikit-learn
  • Positionnement et comparaison avec Keras, mxnet, caffe

Méthode pédagogique

Chaque participant travaille sur un poste informatique qui lui est dédié. Un support de cours lui est remis soit en début soit en fin de cours. La théorie est complétée par des cas pratiques ou exercices corrigés et discutés avec le formateur. Le formateur projette une présentation pour animer la formation et reste disponible pour répondre à toutes les questions.

Méthode d'évaluation

Tout au long de la formation, les exercices et mises en situation permettent de valider et contrôler les acquis du stagiaire. En fin de formation, le stagiaire complète un QCM d'auto-évaluation.

Suivre cette formation à distance

  • Un ordinateur avec webcam, micro, haut-parleur et un navigateur (de préférence Chrome ou Firefox). Un casque n'est pas nécessaire suivant l'environnement.
  • Une connexion Internet de type ADSL ou supérieure. Attention, une connexion Internet ne permettant pas, par exemple, de recevoir la télévision par Internet, ne sera pas suffisante, cela engendrera des déconnexions intempestives du stagiaire et dérangera toute la classe.
  • Privilégier une connexion filaire plutôt que le Wifi.
  • Avoir accès au poste depuis lequel vous suivrez le cours à distance au moins 2 jours avant la formation pour effectuer les tests de connexion préalables.
  • Votre numéro de téléphone portable (pour l'envoi du mot de passe d'accès aux supports de cours et pour une messagerie instantanée autre que celle intégrée à la classe virtuelle).
  • Selon la formation, une configuration spécifique de votre machine peut être attendue, merci de nous contacter.
  • Pour les formations incluant le passage d'une certification la dernière journée, un voucher vous est fourni pour passer l'examen en ligne.
  • Pour les formations logiciel (Adobe, Microsoft Office...), il est nécessaire d'avoir le logiciel installé sur votre machine, nous ne fournissons pas de licence ou de version test.
  • Horaires identiques au présentiel.