Recherche avancée
Par formation
Par date
Par ville
logo HUB Formation
Organisme de Formation
aux Technologies et métiers de L'informatique
La pédagogie au service de la technologie
Accueil > Domaines > Big Data > Big Data - L'essentiel

Big Data - L'essentiel

De la technologie aux usages du Big Data

Le Big Data s'installe désormais dans le paysage des solutions de traitement des données massives. Il permet effectivement, grâce à la maîtrise des informations et des données, d'optimiser la performance opérationnelle de l'entreprise et ainsi de renforcer ses avantages concurrentiels. Si pour certains d'entre nous, le Big Data reste un concept imprécis, pour d'autres, il ouvre donc déjà la voie à de nombreuses applications. Ce séminaire apporte un éclairage sur les usages et les technologies associées au Big Data. Il répond aux questions de son exploitation au sein de l'entreprise ou sous la forme externalisée de Cloud DaaS (Data as a Service).

Objectifs

  • Comprendre le concept du Big Data et mesurer ses apports
  • Connaître l'écosystème du Big Data et appréhender les technologies associées
  • Savoir anticiper son intégration dans les activités informatiques de l'entreprise
  • Être en mesure de l'exploiter dans le respect des règles de sécurité et de confidentialité

Public

  • Responsables de la DSI s'interrogeant sur les apports et le déploiement du Big Data
  • Chefs de projets, Responsables de métiers et consultants souhaitant aborder les projets
  • Toute personne impliquée dans la réflexion et l'étude du Big Data

Prérequis

  • Connaissances sommaires en informatique

Programme de la formation

Exemples d'usage pertinent du Big Data

  • Réseaux : Google, Twitter, Youtube...
  • Gestion des clients (CRM) : Vue 360° des clients / Multicanal
  • Sécurité informatiques (étude de logs) : identification des tentatives d'attaques
  • Analyse des logs d'Internet (Web)
  • Profiling d'individus : ADN numérique
  • Compréhension des usages chez les géants de l'Internet et dans les entreprises
  • Synthèse des critères de succès d'un projet Big Data et des causes d'échec

Définition commune du Big Data selon les grands acteurs du marché

  • Caractéristiques techniques des 3V de Gartner (Vélocité, Variété et Volume) et les variantes (Véracité, Valeur, Validité...)
  • Collecte et traitement des données structurées, semi-structurées et non-déstructurées
  • Transformation des données en informations
  • Création de la valeur à partir des données / Exemple de monétisation
  • Exemple de processus : gestion des données en cycles, de l'acquisition à la gouvernance

Introduction aux architectures des solutions de calcul distribué du Big Data

  • Principe
  • Scalabilité horizontale et verticale / Rupture technologique
  • Architecture de cluster et composants économiques
  • Traitement parallèle des données
  • Enjeux de sécurité des architectures distribuées, lors de l'intégration dans le système informatique des entreprises

Technologies de référence du Big Data à connaître

  • Traitement des données par les superordinateurs ou noeuds/clusters (Hadoop)
  • Usage des architectures existantes : avantages et inconvénients
  • Stockage et traitement des données dans le Data Lake : précautions à prendre
  • Différents types de base des données NoSQL
  • Hadoop : un modèle de traitement distribué du Big Data adopté par les grands acteurs de l'informatique : HDFS, YARN, MapReduce...
  • Ecosystème de Hadoop : Pig, Flume, Zookeeper, HBase, Oozie...
  • Analyse de données : 4 types d'analytique
  • Machine Learning / Intelligence artificielle pour l'analytique

Approches de déploiement du Big Data

  • Déploiement sur site : définition des objectifs, choix des solutions d'analyse et d'intégration, présentation des informations / revue des fournisseurs de composants Big Data
  • Déploiement sur site en version distribuée
  • Déploiement dans les plates-formes Cloud Big Data
  • Précautions à prendre (métriques de qualité, système fermé ...)
  • Difficultés techniques à anticiper
  • Validation de la pertinence d'une plate-forme

Synthèse des plates-formes Cloud public du Big Data Analytiques

  • IBM Analytics
  • Amazon Web Services
  • Google Cloud Platform
  • Microsoft Azure
  • Points communs et différents entre les plates-formes Big Data

Qualité des données

  • Bonne pratique internationale de gouvernance des données
  • Qualification des données (temporel, contextuel, liens aux autres données...) / cadres juridiques, formats ouverts et propriétaires
  • Enrichissement avec l'Open Data / WiKiData

Sécurité des données et confidentialité du Big Data

  • Règlementation RGPD à respecter
  • Recommandation des bonnes pratiques de l'organisme international CSA (Cloud Security Alliance) pour le Big Data
  • Panorama des moyens techniques de sécurité des données et d'accès au Datacenter (cryptage et DLP : Data Lost Prevention...)
  • Recommandations de sécurité dans la manipulation des données
  • Recours aux technologies d'IA/ML et Cybersécurité

Impacts du Big Data à anticiper

  • Évolution des données (Internet des objets, mobilité...)
  • Remise en question des bonnes pratiques actuelles
  • Impacts sur les compétences des équipes informatiques en place
  • Nouveaux métiers (Data Scientist, Data Steward...) et compétences nouvelles à acquérir
  • Rôle de la DSI et de la Direction Numérique face à la montée du Big Data et des activités digitales de l'entreprise

Méthode pédagogique

Chaque participant travaille sur un poste informatique qui lui est dédié. Un support de cours lui est remis soit en début soit en fin de cours. La théorie est complétée par des cas pratiques ou exercices corrigés et discutés avec le formateur. Le formateur projette une présentation pour animer la formation et reste disponible pour répondre à toutes les questions.

Méthode d'évaluation

Tout au long de la formation, les exercices et mises en situation permettent de valider et contrôler les acquis du stagiaire. En fin de formation, le stagiaire complète un QCM d'auto-évaluation.

Suivre cette formation à distance

  • Un ordinateur avec webcam, micro, haut-parleur et un navigateur (de préférence Chrome ou Firefox). Un casque n'est pas nécessaire suivant l'environnement.
  • Une connexion Internet de type ADSL ou supérieure. Attention, une connexion Internet ne permettant pas, par exemple, de recevoir la télévision par Internet, ne sera pas suffisante, cela engendrera des déconnexions intempestives du stagiaire et dérangera toute la classe.
  • Privilégier une connexion filaire plutôt que le Wifi.
  • Avoir accès au poste depuis lequel vous suivrez le cours à distance au moins 2 jours avant la formation pour effectuer les tests de connexion préalables.
  • Votre numéro de téléphone portable (pour l'envoi du mot de passe d'accès aux supports de cours et pour une messagerie instantanée autre que celle intégrée à la classe virtuelle).
  • Selon la formation, une configuration spécifique de votre machine peut être attendue, merci de nous contacter.
  • Pour les formations incluant le passage d'une certification la dernière journée, un voucher vous est fourni pour passer l'examen en ligne.
  • Pour les formations logiciel (Adobe, Microsoft Office...), il est nécessaire d'avoir le logiciel installé sur votre machine, nous ne fournissons pas de licence ou de version test.
  • Horaires identiques au présentiel.